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Abstract. We study analytically the average probability for a Brownian particle to windn

times around a removed area of finite size in a 2D plane with randomly distributed traps. Such
a model describes, for example, the Abrikosov vortex entanglement around a cylindrical cavity
in a superconductor with repulsive columnar defects. The problem amounts to the quantum
mechanics of a particle moving in a plane with point-like random scatterers pierced by a solenoid.
It is shown that at large timest the asymptotic winding angle distribution, which is determined
by a ‘Lifshitz tail’ in the density of states of such a particle, is Gaussian with the scaling variable
x = n/(t1/4 ln1/2 t

)
.

1. Introduction

Topological properties of random walks have been a subject of intensive theoretical
investigations for many years. A lot of problems of this kind appear quite naturally in studies
of the entanglement of polymers (see, e.g. [1]) or Abrikosov vortex lines in superconductors
[2]. Perhaps, the most prominent example is the calculation of the winding angle distribution
in two dimensions. The winding angle of a planar random walk is the total continuous angle
θ(t) = 2πn(t) swept by a Brownian particle around a prescribed point after timet (note
that n can be non-integer). It was found by Spitzer [3] that the asymptotic probability to
wind n times is given by a Cauchy law:

P(n, t) ∼ 1

1+ x2
x ∼ n

ln t
at t →∞. (1)

The logarithmic scaling can be explained qualitatively if we observe that, for an ideal random
walk, the only length scale in the system is the diffusion lengthrD ∼

√
Dt , whereD is

the diffusion coefficient. From dimensional arguments, the increase in winding angle can
be written as dn ∼ drD/rD ∼ d(ln t), so that the scaling variable isx ∼ n/ ln t . The result
(1) was later confirmed by many authors by employing different techniques [4–7]. Other
examples include the winding angle distribution of a self-avoiding random walk [8, 9],
the distribution of the algebraic area enclosed by a planar Brownian curve [10, 11], the
statistical mechanics of entangled closed polymers [12], etc.

Let us now suppose that our Brownian particle cannot walk freely, but instead can be
irreversibly absorbed by the traps located at some randomly distributed points in a plane.
It is known that the properties of such a system differ drastically from those of an ideal
random walk. For instance, the logarithm of the survival probability is given in dimension
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d by lnP(t) ∼ −td/(d+2) [13], while the mean-square displacement is sub-diffusional:〈
r2(t)

〉 ∼ t2/(d+2) [14]. As an example of a real physical system, which is modelled by
a two-dimensional random walk with traps, let us mention the statistical mechanics of
Abrikosov vortex lines in a three-dimensional (3D) superconductor with columnar defects
[15]. If the defects create a repulsive potential for vortices, then the classical vortex partition
function obeys the diffusion equation with traps (see equation (5) below), where the time
variablet should be replaced by the vertical size of a sample.

It was found in [16] that the asymptotic probability distribution of the winding angle
around a prescribed point for a Brownian particle wandering in the presence of random
traps obeys a Cauchy law and looks as follows:

P(n, t)
P (t)

∼ 1

1+ x2
x ∼ n√

t
at t →∞ (2)

whereP(t) = ∫ +∞−∞ dnP(n, t) is the survival probability, i.e. the total probability to find a
particle anywhere in the plane [13]. The change of the scaling variable from logarithmic
to a power law can be understood as follows. In a random medium, another length scale
rρ ∼

√
1/ρ, which is related to the concentration of trapsρ, comes into play in addition

to the diffusion length. It is the presence of this length that changes the asymptotics of the
mean-square displacement:

〈
r2(t)

〉 ∼ rDrρ ∼ √Dt/ρ [14]. Using dimensional arguments,
the increase in winding number can be expressed in terms of the two characteristic lengths:
dn ∼ drD/rρ . Therefore, the scaling variable isx ∼ n/√ρDt . Qualitatively, a particle is
able to survive until timet only if it spends most of its life in a finite region of the plane
almost free of traps and thus never wanders too far away from the starting point. Such
a restriction obviously results in increasing entanglement, comparing to an ideal random
walk.

An obviously unsatisfactory feature of the distribution (2) is that it is so broad that
〈
n2(t)

〉
and all the higher-order moments are infinite. This pathological property, as we shall see,
is directly related to the fact that the trajectory of a Brownian particle was allowed to come
arbitrarily close to the reference point. The same problem arises in the case of an ideal
random walk as well, where the Spitzer distribution (1) also leads to infinite moments. The
way out of this problem was pointed out by Rudnick and Hu [17], who suggested to remove
a disc of finite radius from the plane, thus preventing the trajectory from coming too close
to the reference point. They found that

P(n, t) ∼ exp(−x) x ∼ n

ln t
at t →∞ (3)

so that all moments become finite. A similar exponential distribution was obtained in [18]
for the winding of a discrete random walk, in which case the lattice constant provides a
natural ultraviolet cut-off.

The purpose of the present paper is to find the winding angle distribution for a two-
dimensional (2D) random walkwith traps wandering around an excluded area of finite size.
In the case of vortex line entanglement mentioned above, it means that there is, for example,
a cylindrical cavity in a superconductor with columnar defects, such that the vortices can
wind around it. Our main result is that the average winding probability in this case becomes
Gaussian:

P(n, t)
P (t)

∼ exp
(−x2

)
x ∼ n

t1/4 ln1/2 t
at t →∞. (4)

Different boundary conditions at the surface of the excluded disc affect only the numerical
factor in the definition of the scaling variablex, but not the general form of the asymptotic
distribution function (4).
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The paper is organized as follows. In section 2, a direct relationship is established
between the winding angle distribution functionP(n, t) and the density of states (DoS) of a
quantum particle moving in a 2D plane with random scatterers in the presence of a solenoid.
The low-energy behaviour of DoS corresponding to the large-t asymptotics ofP(n, t) is
determined by the optimal fluctuations of a random potential, which are described, in the
quantum field-theoretical formulation, by instantons. In section 3, an explicit form of the
instanton configurations is found for two different kinds of the boundary conditions at the
surface of the excluded disc, and the asymptotics of the winding angle distribution functions
are calculated with exponential accuracy. Section 4 concludes with a discussion.

2. Field theory formulation

The probability distribution for a continuum random walk to arrive at a pointr after time
t satisfies the diffusion equation

∂P

∂t
= D∇2P − U(r)P . (5)

HereU(r) = U0
∑

i δ(r −Ri ) is the random ‘potential’, which is the probability per unit
time and unit volume for a particle to be trapped (U0 > 0). The positionsRi of point-like
traps are distributed uniformly in a plane according to the Poisson law with mean densityρ.
The restriction that the trajectory of a random walker cannot come too close to the origin
is accounted for by the following boundary conditions at the surface of the removed disc
of radiusR:
(A): P |r=R = 0

or (B):
∂P

∂r

∣∣∣∣
r=R
= 0.

(6)

Condition (A), which will be referred to as the inelastic one, describes the situation when
the particle gets irreversibly absorbed once it reaches the boundary of the forbidden region,
while (B) corresponds to a purely elastic reflection at the boundary.

With the initial conditionP(r, t = 0) = δ(r − r′), the formal solution of equation (5)
is given by the Wiener path integral formula:

P(r, t; r′, 0|U) =
∫ r(t)=r

r(0)=r′
Dr(τ ) exp

{
−
∫ t

0
dτ

(
1

4D
ṙ2(τ )+ U(r(τ ))

)}
. (7)

The probability for a random walk of ‘length’t to wind n times around a reference point
in a given distribution of traps can be calculated by inserting aδ-function constraint [4] in
the expression on the right-hand side of (7), so that

P(n, t |U) =
〈
δ

(
n− 1

2π

∫ t

0
dτ θ̇(τ )

)〉
P(r,t;r′,0|U)

(8)

whereθ(t) is the angle between the radius-vectorr(t) and some fixed direction in the plane.
Writing the δ-function as an integral over an auxiliary variablep, we arrive at

P(n, t |U) =
∫ ∞
−∞

dp e2π ipn

×
∫ r(t)=r

r(0)=r′
Dr(τ ) exp

{
−
∫ t

0
dτ

(
1

4D
ṙ2(τ )+ U(r(τ ))+ ipθ̇(τ )

)}
. (9)

The path integral on the right-hand side is nothing but the Euclidean Green function
Gφ(r, t; r′, 0) of a particle of unit charge and massm = (2D)−1 moving in a random
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potentialU(r) and in the field of a solenoid localized at the origin and carrying a flux
φ = −2πp. Therefore, the winding probability is given by the following Fourier transform:

P(n, t; r, r′) =
∫ ∞
−∞

dφ

2π
e−iφnGφ(r, t; r′, 0). (10)

The Green function on the right-hand side has the following explicit form:

Gφ(r, t; r′, 0) =
∑
i

ψi(r) ψi(r
′) e−Ei t (11)

whereψi(r) andEi are the eigenfunctions and eigenvalues of the Hamiltonian

H = D(−i∇ −A(r))2+ U(r). (12)

HereAθ = φ/2πr is the vector potential created by the solenoid. The functionsψi(r) must
satisfy the boundary conditions (6). Note that, since the random potentialU(r) is positive,
all the eigenvaluesEi > 0.

If we assume that the trajectory is closed (i.e.r = r′) and the starting pointr is
not fixed, then, after integration overr, divided by the system volume�, we obtain the
following expression for the average probability:

P(n, t) ≡ 〈P(n, t |U)〉U =
∫ ∞
−∞

dφ

2π

∫ ∞
0

dE e−iφn e−EtN(E, φ) (13)

whereN(E, φ) = (1/�)〈∑i δ(E−Ei(φ))
〉
U

is the average density of states. The asymptotic
behaviour ofP(n, t) at larget is thus determined by the asymptotics ofN(E, φ) at small
E, which is called the ‘Lifshitz tail’ [19].

From the analysis of a random walk with traps but without solenoid it is known that at
E → 0 the main contribution to the density of states comes from the large regions in real
space which are free of traps. The probability to find such a region of areaA is exponentially
small: p(A) ∼ e−ρA. On another hand, the ground state energy of a particle in a 2D potential
well of radiusR is given byE(R) ∼ DR−2 ∼ DA−1. Therefore,A(E) ∼ D/E, and the
density of states isN(E) ∼ p(A(E)) ∼ exp(−constant× ρD/E). More formally, such
exponentially small tails of the density of states correspond to the contribution of instantons,
which are spatially localized solutions of the saddle-point equations in the functional–integral
representation of the problem [20, 21]. Below, following a general procedure of [22, 23],
we find the instanton solutions in the presence of a solenoid.

The density of states isN(E) = −(1/π�) ∫ d2r ImGR(r, r;E), whereGR(r, r′;E) =〈
r
∣∣(E −H + i0)−1

∣∣r′〉 is the retarded Green function of the Schrödinger equation with the
Hamiltonian (12), which can be calculated by standard means of the quantum field theory.
Using the replica trick, the non-averaged retarded Green function is written in the following
form (in the limit n→ 0):

GR(r, r′;E) = −i lim
η→+0

∫
D2ϕ(r) exp

(
i
∫

d2r ϕ̄(E −H + iη)ϕ

)
ϕ1(r) ϕ̄1(r′) (14)

where ϕ = (
ϕ1, . . . , ϕn

)
is an n-component Bose field andD2ϕ = ∏n

a=1D
(
Reϕa

)
×D( Imϕa

)
/π . The functional integral is convergent due to the presence of the term with

η. It is easy to see that the boundary conditions (6) for the Green function are automatically
satisfied if we impose the corresponding conditions on the fieldsϕa(r). After disorder
averaging, the exponent on the right-hand side of equation (14) takes the form

iS[ϕ] =
∫

d2r
{
iϕ̄
(
E −D(−i∇ −A)2+ iη

)
ϕ− ρ(1− e−iU0ϕ̄ϕ

)}
. (15)
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It is convenient to write the fieldsϕ as ϕ = ϕ1 + iϕ2, ϕ̄ = ϕ1 − iϕ2, where
ϕ1,2 =

(
ϕ1

1,2, . . . , ϕ
n
1,2

)
are real on the initial functional integration contour. The saddle

points of the action satisfy the following equation:

D(−i∇ −A(r))2ϕ1,2+ Ece−iU0(ϕ
2
1+ϕ2

2)ϕ1,2 = Eϕ1,2 (16)

whereEc = ρU0 is the mean value of the random potential. Except from an obvious
solutionϕ1,2 = 0, equation (16) also has non-trivial solutions in the complex plane ofϕ1,2.
To find their explicit form, it is convenient to rotate the functional integration contour:
ϕ1,2 → e−iπ/4ϕ̃1,2, which makes equation (16) real. Due to the rotational symmetry of
the action (15) in then-dimensional replica space, we are able to seek a solution of the
saddle-point equations in the following form:

ϕ̃1,a(r) = 1√
2
ϕ(r) e1,a ϕ̃2,a(r) = 1√

2
ϕ(r) e2,a (17)

where e1,2 are arbitraryn-component unit vectors. From (16) and (17) we obtain the
following equation for the functionϕ(r) which is assumed to be rotationally invariant in
real space (i.e.ϕ(r) = ϕ(r) eimθ with m = 0):

−D1

r

d

dr

(
r

d

dr

)
ϕ +Dν

2

r2
ϕ + Ece−U0ϕ

2
ϕ = Eϕ (18)

whereν = |φ|/2π .
At E < 0 equation (18) only has the solutionϕ = 0. However, at 0< E < Ec a non-

zero solutionϕ = ϕinst(r) (instanton) also exists. It is easy to see that a non-trivial saddle
point contributes to the imaginary part of the Green function. Indeed, the rotation of the
functional integration contour mentioned above cancels the overall factor i in equation (14)
and also changes the exponent: iS →−S, where

S[ϕ̃1,2] =
∫

d2r
{
ϕ̃ai
(−E +D(−i∇ −A)2)ϕ̃ai + ρ(1− e−U0ϕ̃

a
i ϕ̃

a
i

)}
(19)

(i = 1, 2). At 0< E < Ec this action describes a metastable field theory with a non-zero
saddle point at the real axis in the complex plane ofϕ̃1,2. In order to restore convergence,
one has once again to rotate the functional integration contour leaving this saddle point by
eiπ/2. Such a procedure generates the required factor i in front of the functional integral.
Finally, at 0< E � Ec the density of states is exponentially small:

N(E, φ) ∼ e−Sinst(E,φ) (20)

where the instanton action is

Sinst =
∫

d2r
{
ϕinst

(−E +D(−i∇ −A)2)ϕinst+ ρ
(
1− e−U0ϕ

2
inst
)}
. (21)

The pre-exponential factor can be calculated by expanding the action (19) around the
instanton solution, followed by the Gaussian integration over all modes with non-zero
eigenvalues [22, 23]. We, however, shall not proceed further in this direction. It is just
worth noticing that, within the exponential accuracy, when the time dependence of the Green
function at larget is determined by the instanton contributions, its coordinate dependence
contained in the pre-exponential factor (see equation (14)) is not important. Therefore, we
do not expect the results in the asymptotic regime to depend onr and also on whether we
consider a closed or an open trajectory.

Let us introduce the dimensionless variables

r = ξx ϕinst(x) = U−1/2
0 f (x).
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Hereξ = √D/E is a characteristic scale of the problem, which is nothing but the typical
length of diffusion in timet = E−1. Equation (18) can then be written as

−1

x

d

dx

(
x

d

dx

)
f + ν

2

x2
f + α2e−f

2
f = f (22)

whereα2 = Ec/E. The solution of this equation must be finite everywhere and satisfy the
following boundary conditions at the surface of the removed disc:

f |x=X = 0 (23)

in the inelastic case, or

∂f

∂x

∣∣∣∣
x=X
= 0 (24)

in the elastic case. HereX = R/ξ � 1 in the limit E � Ec.
In the derivation of equation (22), we introduced from the beginning a continuum random

walk described by the diffusion equation (5). Alternatively, one might start, following
Lubensky [21], from a slightly different discrete model, in which a Brownian particle walks
on a square lattice, whose sites are occupied by traps with probabilityp < 1. Traps
annihilate the particle once it reaches them. It can be shown that the calculation of the
winding distribution for such a system reduces to finding the instanton configurations in
some effective field theory in the presence of a solenoid. In the continuum limit, this field
theory is characterized by an action similar to (19), but with a different ‘potential energy’:

ρ
(
1− e−U0ϕ̃

a
i ϕ̃

a
i

)→− ln
{
1− p + pe−ϕ̃

a
i ϕ̃

a
i

}
. (25)

We shall see in the next section that the difference between the two field theories is actually
not essential, so that both of them can be dealt with in a similar fashion.

3. Instanton solutions and Lifshitz tails

Due to the complexity of the saddle-point equation (22), it is possible to find only an
approximate solution. To do that, we replace the ‘potential’V (f ) = α2e−f

2
in the nonlinear

equation (22) by the following piecewise constant effective potential:

Veff(f ) =
{
α2 at f < 1

0 at f > 1.
(26)

It is assumed thatE � Ec, i.e. α � 1. The problem thus amounts to solving a set of
linear Schr̈odinger-like equations complemented by the requirement of continuity of both
the solution and its derivative at certain matching pointsxi (which are the boundaries of
the effective potential well), whose positions are to be determined from the conditions
f (xi − 0) = f (xi + 0) = 1.

The same trick also works for the lattice model mentioned at the end of the previous
section. In this case, the dimensionless field isf = ϕ and we obtain from (25) the following
‘potential’ in the nonlinear saddle-point equation:

V (f ) = p

E

e−f
2

1− p + pe−f 2 .

It is easy to see thatV (f ) can be replaced by the effective potential (26) withα2 = p/E �
1. Therefore, all subsequent calculations and results are the same for both models. Let us
start from the case of an absorbing wall.
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x  2

x  2

1x  

(a)

α 2

X x

1

      (b)

x

α 2

X

1

0

0

Figure 1. The effective potentialVeff(f (x)) (thin line) and the instanton solutionf (x) (thick
curve) as functions ofx = r/ξ in the case of (a) an absorbing boundary and (b) a reflecting
boundary.X is the position of the boundary andα2 = Ec/E � 1.

3.1. Absorbing wall

As seen from equation (23), the conditionf (x) > 1 cannot be satisfied forx sufficiently
close toX. On another hand,f (x) must vanish asx →∞. It is clear, therefore, that one
needs at least two matching points in this case, so that the solution is a piecewise continuous
function (see figure 1(a)):

f (x) =


f1(x) at X < x < x1

f2(x) at x1 < x < x2

f3(x) at x2 < x

(27)
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where the functionsfi(x) obey the following linear equations:

−1

x

d

dx

(
x

d

dx

)
f1,3+ ν

2

x2
f1,3+ α2f1,3 = f1,3

−1

x

d

dx

(
x

d

dx

)
f2+ ν

2

x2
f2 = f2.

(28)

A general solution of these equations, which tends to zero atx →∞, looks as follows:

f1 = C(1)1 Iν(αx)+ C(2)1 Kν(αx)

f2 = C(1)2 Jν(x)+ C(2)2 Yν(x)

f3 = C3Kν(αx)

(29)

whereJν(x) andYν(x) are the Bessel functions of the first and second kind, respectively, and
Iν(x) andKν(x) are the Bessel functions of imaginary argument. The boundary conditions
read

f1(x1) = f2(x1) = 1 f2(x2) = f3(x2) = 1

f ′1(x1) = f ′2(x1) f ′2(x2) = f ′3(x2)

f1(X) = 0.

(30)

Substituting (29) in (30), we obtain a system of seven transcendent equations to determine
C
(1,2)
1 , C(1,2)2 , C3, x1 and x2. After changing notationsC(1,2)2 = αA1,2, the equations for
A1,2 andx1,2 take the form

A1Jν(x1)+ A2Yν(x1) = α−1

A1Jν(x2)+ A2Yν(x2) = α−1

A1J
′
ν(x1)+ A2Y

′
ν(x1) = Fν(x1, X)

A1J
′
ν(x2)+ A2Y

′
ν(x2) = K ′ν(αx2)

Kν(αx2)

(31)

where

Fν(x1, X) = Kν(αX) I
′
ν(αx1)− Iν(αX)K ′ν(αx1)

Kν(αX) Iν(αx1)− Iν(αX)Kν(αx1)
(32)

(x1 > X). In the limit α � 1 the right-hand sides of the first two equations vanish. If
to assume thatx2 ∼ 1 (we shall see below that this assumption is self-consistent), then
at α � 1 the right-hand side of the fourth equation in (31) tends to−1. ExcludingA1,2

from equations (31) and using the expression for the Wronskian of the Bessel functions
W {Jν(x), Yν(x)} = 2/(πx), we end up with two equations forx1,2:

x1Fν(x1, X) Jν(x1) = −x2 Jν(x2)

x1Fν(x1, X) Yν(x1) = −x2 Yν(x2).
(33)

These equations are valid forE � Ec and arbitraryν andX. Going back to the dimensional
variables, it is easy to see from (21) that the instanton action is proportional to the area of
the effective potential well:

Sinst = 2πρ
∫ r2

r1

dr r = πρξ2
(
x2

2(ν)− x2
1(ν)

)
. (34)

The behaviour ofx1,2 and, therefore,Sinst at ν → 0 turns out to be qualitatively different
depending on whetherX is zero or not.
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X = 0. Let us first consider the case when the removed disc shrinks to a point and briefly
recall how the result (2) was obtained [16]. The functionF looks as follows:

Fν(x1, X = 0) = I ′ν(αx1)

Iν(αx1)
= ν

αx1
+ Iν+1(αx1)

Iν(αx1)
. (35)

In the absence of solenoid (i.e. atν = 0), equations (33) read

x1
I1(αx1)

I0(αx1)
= −x2

J0(x2)

J0(x1)
x1
I1(αx1)

I0(αx1)
= −x2

Y0(x2)

Y0(x1)
.

The solution of these equations isx1,0 = 0, x2,0 = a, wherea ≈ 2.405 is the first zero of
the functionJ0(x). After substitution in (34), the Lifshitz result [19] is recovered.

At α fixed andν → 0 we can use a perturbative expansion in powers ofν and seek
a solution of equations (33) in the formx1 = δx1(ν), x2 = a + δx2(ν), whereαδx1 → 0.
Then, using the identities [24]

Jν(x) = J0(x)+ 1
2πνY0(x) Yν(x) = Y0(x)− 1

2πνJ0(x) at ν → 0 (36)

and also the propertyJ ′0(x) = −J1(x), equations (33) and (35) can be reduced, in the
leading order inδx1,2 andν, to the following form:

1

α

1

0(ν)

(
1
2αδx1

)ν = a J1(a) δx2− 1
2πa Y0(a) ν

1

α

0(ν + 1)

π

(
1
2αδx1

)−ν = a Y0(a)

where0(x) is the gamma function. Therefore, we have

x1 = 2

α

(
πa Y0(a) α

0(ν + 1)

)−1/ν

' 2

α
(πa Y0(a) α)

−1/ν

x2 = a +
(
πY0(a)

2J1(a)
+ 1

πa2J1(a) Y0(a) α2

)
ν ' a + πY0(a)

2J1(a)
ν.

(37)

Since atν → 0, x1 goes to zero faster thanδx2, its contribution to the instanton action can
be neglected. From (34), we then obtain [16]

N(E, φ) ∼ e−Sinst(E,φ) = exp

(
−πρDa

2(1+ b0|φ|)
E

)
(38)

whereb0 = Y0(a)/2aJ1(a) ≈ 0.204. Substituting (38) in (13) and calculating the integrals
by the steepest-descent method, we end up with equation (2).

It is seen from the above analysis that the pathologically broad distribution function
(2) appears as a result of a non-analytical, linear in|φ|, behaviour of the density of states
at smallφ. This non-analiticity, in turn, is related to the fact that one cannot regard the
solenoid field as a small perturbation due to 1/x2-singularity at smallx. The singularity
becomes important as the inner radius of the effective potential well goes to zero atν → 0.

X 6= 0. In the subsequent analysis we assume that the radiusR of the removed disc is
small, i.e.αX � 1. It means thatR � Rc, whereRc =

√
D/Ec. We also assume thatx1

is sufficiently close toX so thatαx1 � 1. In this limit the equations can be considerably
simplified. Substituting in equation (32) the asymptotic expansions of the Bessel functions
at small arguments, we obtain

Fν(x1, X) = ν

αx1

(x1/X)
ν + (x1/X)

−ν

(x1/X)ν − (x1/X)−ν
. (39)
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It is obvious from this expression that the Taylor expansion ofFν contains only even powers
of ν.

Let us first consider the case ofν = 0. We seek a solution of equations (33) in the form
x1,0 = X +1x1, x2,0 = a +1x2, where1x1 � X, 1x2 � a at E → 0. It follows from
(39) that

F0(x1,0, X) = 1

α1x1
.

Substituting this expression in equations (33) and using the asymptoticsY0(x) ' (2/π) ln x
at smallx, we have

x1,0 = X + 2

πa Y0(a)

X

α
ln

1

X

x2,0 = a + πY0(a)

2J1(a)
ln−1 1

X
.

(40)

The difference betweenx1,0 andX ∼ √E vanishes atE → 0 faster thanX itself (as
E| lnE|), so that our initial assumption thatx1−X � X is self-consistent.

At ν 6= 0, we seek a solution of equations (33) in the following form:xi =
xi,0 + δxi(ν,X), where δxi � 1xi (i = 1, 2). The leading terms in the expansion of
Fν in powers ofδx1 andν can be found from (39):

Fν(x1, X) = 1

α1x1
− 1

α(1x1)2
δx1+ 1x1

3αX2
ν2.

After substitution of this expression and the expansions of the Bessel functions (A1) from
the appendix, equations (33) can be linearized with respect toδx1,2:

L11δx1+ L12δx2 = M1ν
2

L21δx1+ L22δx2 = M2ν
2

(41)

where

L11 = x1,0J1(x1,0)− J0(x1,0)

α1x1
+ x1,0J0(x1,0)

α(1x1)2
' π2a2Y 2

0 (a)

4

α

X
ln−2 1

X

L12 = x2,0J1(x2,0)− J0(x2,0) ' aJ1(a)

L21 = x1,0Y1(x1,0)− Y0(x1,0)

α1x1
+ x1,0Y0(x1,0)

α(1x1)2
' −πa

2Y 2
0 (a)

2

α

X
ln−1 1

X

L22 = x2,0Y1(x2,0)− Y0(x2,0) ' aY1(a)− Y0(a)

and

M1 = x1,0j2(x1,0)

α1x1
+ x1,0J0(x1,0)1x1

3αX2
+ x2,0j2(x2,0) ' πa Y0(a)

4
ln

1

X

M2 = x1,0y2(x1,0)

α1x1
+ x1,0Y0(x1,0)1x1

3αX2
+ x2,0y2(x2,0) ' −aY0(a)

6
ln2 1

X
.

Here we singled out the leading contributions toLij andMi at E → 0. Note that all the
terms linear inν cancelled each other on the right-hand sides of equations (41). Solving
the linear equations, we finally obtain

δx1 = 1

3πa Y0(a)
ν2X

α
ln3 1

X

δx2 = πY0(a)

6J1(a)
ν2 ln

1

X
.

(42)
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Substituting (42) in (34), we see that the flux dependence of the instanton action is
determined, in the leading order inE, by the deviation of the outer radiusx2(ν) from
x2,0. Going back to the dimensional variables, we obtain

Sinst,A(E, φ) = πρξ2a2

(
1+ 2

a
δx2(ν)

)
= πρDa2

E

(
1+ b1φ

2 ln
E0

E

)
(43)

whereb1 = Y0(a)/24πaJ1(a) ≈ 0.005 andE0 = D/R2.
After substitution of (43) in (20) and (13), we arrive at

PA(n, t) ∼
∫ ∞
−∞

dφ
∫ ∞

0
dE e−iφne−Et exp

{
−πρDa

2

E

(
1+ b1φ

2 ln
E0

E

)}
.

At large t the integral overE can be calculated by the method of steepest descent, resulting
in

PA(n, t) ∼
∫ ∞
−∞

dφ e−iφn exp

{
−2
√
πρDa2t

(
1+ b1

4
φ2 ln

E2
0t

πρDa2

)}
∼ exp

(−2
√
πρDa2t

)
exp

{
− n2

2ab1

1√
πρDt

ln−1 E2
0t

πρDa2

}
. (44)

The first exponential factor on the right-hand side of (44) represents the asymptotic
probability P(t) for a particle without solenoid to survive after timet and coincides with
the result of Balagurov and Vaks [13]. The second factor can thus be interpreted as the
conditional probability for a particle which has survived until timet to wind n times around
the removed disc.

3.2. Reflecting wall

In this case the calculations are simpler, since we are able to introduce just one matching
point x2, i.e. putx1 = X from the beginning, so that

Sinst = πρξ2x2
2(ν)− R2. (45)

The solution of the linearized saddle-point equation with the effective potential (26) looks
as follows (see figure 1(b)):

f (x) =
{
f2(x) at X < x < x2

f3(x) at x2 < x
(46)

where the functionsf2,3(x) obey the equations (28) complemented by the boundary
conditions

f2(x2) = f3(x2) = 1

f ′2(x2) = f ′3(x2)

f ′2(X) = 0.

(47)

Substituting the solutions (29) in (47), we end up, in the limitα → ∞ and x2 ∼ 1, with
the following equation forx2:

Jν(x2)

Yν(x2)
= J ′ν(X)
Y ′ν(X)

. (48)

In the absence of solenoid, we obtain

x2,0 = a + πY0(a)

4J1(a)
X2 at X � 1. (49)
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At ν 6= 0, we seek a solution of equation (48) in the formx2 = x2,0+ δx2(ν). Substituting
the expansions (A1) and (A2) in equation (48), we find that the terms of the first order in
ν cancel out, and the leading contribution toδx2 atX � 1 looks as follows:

δx2 = Y0(x2,0) j
′
2(X)+ j2(x2,0) Y1(X)− J0(x2,0) y

′
2(X)− y2(x2,0) J1(X)

J1(x2,0) Y1(X)− Y1(x2,0) J1(X)
ν2

' πY0(a)

2J1(a)
ν2 ln

1

X
. (50)

Substitution of this expression in (45) results in

Sinst,B = πρDa2

E

(
1+ b2φ

2 ln
E0

E

)
(51)

whereb2 = Y0(a)/8πaJ1(a) = 3b1 ≈ 0.015. Comparing this result with (43), we see that
the flux-dependent correction to the instanton action in the presence of a solenoid is not
sensitive (up to a numerical coefficient) to the boundary conditions at the surface of the
excluded disc. Proceeding as in the previous subsection, we finally obtain

PB(n, t) ∼ exp
(−2

√
πρDa2t

)
exp

{
− n2

2ab2

1√
πρDt

ln−1 E2
0t

πρDa2

}
. (52)

To conclude this section, it is worth noticing that the flux dependence of the low-energy
asymptotics of DoS can be estimated from rather simple qualitative considerations, following
the heuristic argumentation of Lifshitz [19] extended to the case of a non-zero flux. Indeed,
it was found in subsection 3.1 that the difference between the inner matching pointx1 and
X can be safely neglected. Therefore, for both types of boundary conditions the problem
of finding the low-energy tail of DoS amounts to the calculation of the ground state energy
E of a quantum particle confined to move in a trap-free region, which is modelled by a
potential well with infinitely high walls, having the shape of a coaxial ring with inner and
outer radiiR 6= 0 and r2 ' aξ � R, respectively. Under these conditions, one should
expect a perturbation theory with respect toφ to work well, since the 1/r2-singularity of
the solenoid field is now cut off by the finite radiusR. The flux-dependent correction toE
then reads

δE(φ) =
∫ aξ
R
r dr

(
Dφ2

/
4π2r2

)
ψ2

0(r)∫ aξ
R
r dr ψ2

0(r)
(53)

whereψ0(r) ∼ J0(r/ξ) is the ground state wavefunction in the absence of the solenoid.
Calculating the integrals, we obtain:δE(φ) ∼ Dφ2ξ−2 ln(ξ/R) ∼ φ2E ln(E0/E). To keep
the ground state energy fixed, one has to compensate the correction (53) by increasing
the area of a trap-free region:δA(E, φ) ∼ (D/E)(δE(φ)/E). Therefore, the DoS
at a fixed energy decreases:N(E, φ) ∼ exp{−ρ(A(E) + δA(E, φ))} ∼ N(E, φ =
0) exp

{−constant× (ρD/E)φ2 ln(E0/E)
}
, which agrees with the expressions (43) and (51)

obtained by more rigorous analysis.

4. Conclusions and discussion

Summarizing, for both kinds of boundary conditions the average winding probability is
given by the following expression:

P(n, t)
P (t)

∼ exp

{
−c
(
n

n0

)2(
t0

t

)1/2

ln−1 t

n4
0t0

}
at t →∞ (54)
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where P(t) = ∫∞
−∞ dnP(n, t) is the survival probability, andcA = 1/2ab1 ≈ 41.6,

cB = 1/2ab2 ≈ 13.9. The characteristic scales of the winding number and time are

n0 =
(
πρR2

)1/4 = N1/4
R t0 = E−1

0 =
R2

D
(55)

with a simple physical meaning:NR is the number of traps per area of the excluded disc,
andt0 is the time of diffusion at distanceR. We see that the presence of a non-zero cut-off
radius around the reference point not only makes the asymptotic distribution Gaussian, but
also changes the scaling variable fromx ∼ n/

√
t to x ∼ n/

(
t1/4 ln1/2 t

)
. The reason for

such a behaviour is the qualitatively different flux dependence of the ‘Lifshitz tail’ atR = 0
andR 6= 0 (compare (38) with (43) or (51)).

The boundary conditions for a walker at the surface of the removed disc turn out to be
irrelevant for the asymptotic form ofP(n, t). It is interesting that the same situation takes
place for a random walk without traps, in which case the asymptotic distribution has the
form (3) (with different numerical factors in the definition of the scaling variablex though)
both for reflecting and absorbing boundaries [7]. One can also speculate that the geometrical
shape of the removed region becomes irrelevant att → ∞, so that the distribution (4) is
actually asymptotically universal.

Concerning the results known for some other similar systems, one should mention the
numerical simulations in [7] of a random walk on a lattice with random bonds. The winding
probability distribution for such a system is argued to be Gaussian with the scaling variable
x ∼ n/√ln t , being thus very similar to the self-avoiding case [8, 9].

In conclusion, the theory of random walks with various topological constraints in
disordered media seems to be an interesting and rich field for theoretical investigations.
Apart from apparent practical relevance for the physics of polymers or vortex lines, this
theory also has intimate connections with many other areas of statistical physics. Among
some interesting open problems here, let us just mention the calculation of the winding angle
distribution for a Brownian particle diffusing in a medium with critical disorder (for instance,
in a quenched random velocity field [25]), or the vortex entanglement in a superconductor
with point defects, etc.
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Appendix

In this appendix we derive the small-x asymptotics of the expansions of the Bessel functions
with respect to an index. Let

Jν(x) =
∞∑
m=0

jm(x) ν
m Yν(x) =

∞∑
m=0

ym(x) ν
m (A1)

(j0(x) = J0(x), y0(x) = Y0(x)). It follows from (36) that

j1(x) = 1
2πY0(x) ' ln x y1(x) = − 1

2πJ0(x) ' − 1
2π +O

(
x2
)
.
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From the integral representation of the Bessel functions [24]

Jν(x) = −sinνπ

π

∫ ∞
0

dt e−x sinht−νt + 1

π

∫ π

0
dθ cos(x sinθ − νθ)

Yν(x) = − 1

π

∫ ∞
0

dt
(
eνt + e−νt cosνπ

)
e−x sinht + 1

π

∫ π

0
dθ sin(x sinθ − νθ)

we obtain

j2(x) =
∫ ∞

0
dt te−x sinht − 1

2π

∫ π

0
dθ θ2 cos(x sinθ)

y2(x) = − 1

π

∫ ∞
0

dt
(
t2− 1

2π
2
)
e−x sinht − 1

2π

∫ π

0
dθ θ2 sin(x sinθ).

The dominant contributions to these expressions at smallx come from the first integrals on
the right-hand sides, whose asymptotics can be easily evaluated, resulting in

j2(x) ' 1

2
ln2 x y2(x) ' 1

3π
ln3 x. (A2)
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